
System Management CSCI
Redundancy Management CSC

Thor DP3 Part 1

December 18, 1997
Thor DP3.0

System Management CSCI i 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Table of Contents
1. Redundancy Management CSC ...1

1.1 Redundancy Management CSC Introduction ...1
1.1.1 Redundancy Management CSC Overview ...1
1.1.2 Redundancy Management CSC Operational Description...2

1.2 Redundancy Management CSC Specifications ...3
1.2.1 Redundancy Management CSC Groundrules...3
1.2.2 Redundancy Management CSC Functional Requirements ...4
1.2.3 Redundancy Management CSC Performance Requirements ..8
1.2.4 Redundancy Management CSC Interfaces Data Flow Diagrams..8

1.3 Redundancy Management CSC Design Specification...9
1.3.1 Set Integrity ..9
1.3.2 System Integrity..9
1.3.3 Subsystem Integrity...9
1.3.4 Computer Integrity..15
1.3.5 System Configuration Table..15

System Management CSCI ii 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Table of Figures
Figure 1. Redundancy Management Conceptual Data Flow Diagram...2
Figure 2. Logical Redundancy Management Organization...2
Figure 3 - SCT Class Structure...7
Figure 4 - RM CSC Data Flow ..9
Figure 5 - System Configuration Table Data Flow...16
Figure 6 - SCT API Hierarchy...17
Figure 7 - SCT Container Structure...18
Figure 8 - SCT Object Inheritance...19

System Management CSCI 1 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1. Redundancy Management CSC

1.1 Redundancy Management CSC Introduction

1.1.1 Redundancy Management CSC Overview

Release Notes:

• The Redundancy Management CSC is being delivered in two drops for Thor. The first drop is
scheduled for mid-January and consists of executing SCT APIs for a local computer, and stub
SSI APIs. The second drop contains full Thor functionality. This document focuses on the
interface definition (APIs) to ensure that other CSCIs can meet their deadlines. Internal design
and documentation of that design will be discussed at a second Thor DP3.

The Redundancy Management CSC monitors, and maintains the health of the RTPS. It does this by
monitoring the health of both the software and hardware in the system. If failures are detected and a
recovery mechanism is in place, Redundancy Management implements the recovery. All failures cause
generation of a System Message.

Redundancy Management also manages the RTPS Test Set. The configuration of this Test Set is
reflected in the System Configuration Table (SCT) during operations. This table specifies the hardware
and software configuration, both logical and physical. The SCT specifies the resources allocated to Test
Sets, which then support specific Activities. The static portion, and initial values for much of the dynamic
part of the SCT are generated off-line and loaded by Redundancy Management into memory at
initialization. Redundancy Management maintains the dynamic portion of the table and makes all data
available to displays and other applications.

Subsystems

Subsystem Integrity/Computer Integrity
- Generate Health Counter
- Collect Health Data
- Collect Performance Data
- Relay Subsystem State
- Update Local SCT

Application & System Services
-System Message Services
-Network Services
-Inter-App Communication Services

State SCT

System Integrity (Master CCP Only)
-Report Failures -Maintain master SCT

CCP

Gateways

H&S

Subsystem Integrity/Computer Integrity
- Generate Health Counter
- Collect Health Data
- Collect Performance Data
- Relay Subsystem State
- Update local SCT

DDP

State SCT

Application & System Services
-System Message Services
-Network Services
-Inter-App Communication Services

Subsystems

Subsystem Integrity/Computer Integrity
- Generate Health Counter
- Collect Health Data
- Collect Performance Data
- Relay Subsystem State
- UPdate Local SCT
- Provide Performance Data to Display

CCWS

State SCT

Application & System Services
-System Message Services
-Network Services
-Inter-App Communication Services

Subsystems

System
Status

Displays

SCT, H&S

System Management CSCI 2 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Figure 1. Redundancy Management Conceptual Data Flow Diagram

1.1.2 Redundancy Management CSC Operational Description

As shown in Figure 2, Redundancy Management is composed of five parts: Set Integrity, System Integrity,
Subsystem Integrity, Computer Integrity and System Configuration Table. Each Integrity monitors the
integrity of its parts and reports the results of this analysis to a higher level. The collected integrity is
reflected in the SCT.

Parts of the Redundancy Management CSC execute in the DDPs, CCPs, CCWSs, and the Ops/CM Server.
Subsystem and Computer Integrity equivalents execute in the Gateways, but are not part of this CSC. Set
Integrity executes in the Set Master CCWS. The SCT is available to any computer that executes any part
of the Redundancy Management CSC.

Computer Integrity executes in each Computer, monitors the health and status of the computer, and
records standard hardware performance data. It makes the health data available to any local Subsystem
Integrity operation. Both the health and performance data are provided to System Integrity.

Set Integrity

System Integrity

Subsystem
Integrity

Computer
Integrity

System
Configuration

Table

Figure 2. Logical Redundancy Management Organization

Subsystem Integrity executes in each Subsystem and uses the Computer health and information provided
from applications in the Subsystem to generate Subsystem Health and the Health Counter FD. This health
and status report is provided to System Integrity. Using a combination of the Health and Status report and
information from other subsystems, System Integrity makes a determination on the health of the
Subsystem. Any changes in the health and status are recorded in the System Configuration Table, which
is viewable on the System Status Display.

Based on collected data, System Integrity determines the health of each subsystem and keeps the SCT
current. It also provides general health of the Test Set to Set Integrity. System Integrity executes in the
Set Master CCP.

System Management CSCI 3 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.2 Redundancy Management CSC Specifications

1.2.1 Redundancy Management CSC Groundrules

• Definitions

• An Activity is a named operation performed as part of a test. It may consist of lower level
Activities.

• Computer is defined to be a physical box that contains one or more CPUs or Processors

• Computers communicate with other Computers over the Network

• Any peripherals in the same physical box such as a disk drive, memory, cards are
also considered to be part of the Computer.

• CPU and Processor are used interchangeably to refer to actual compute engine of a computer.
Many modern Computers have more than one CPU.

• Role: Active or Standby. In some cases Hot Spare may be considered a role, and certain
configurations may have other unique roles.

• State: (In Configuration, Loaded, Communicating, Go, In ORT)

• Group: a collection of computers that cannot be logically separated, and are therefore
assigned to single test set. This is also known as a Control Group

• Redundant subsystems are actually composed of two Subsystems, one designated as active, one
designated as standby. In this document, Subsystem refers to the Active or Standby Subsystem, not
the combined pair.

• Executable code with an API is provided for the CCPs, DDPs, CCWSs, and Ops/CM Server. This
replaces the Application Services provided API identified in the System Integrity thread.

• Dependencies:
− Ideally, System Integrity will reuse Data Fusion and Constraint Management software to build

failure data from health and status information.
− Interface for generation of System Messages (System Services)
− OPS/CM will ensure that the correct SCT data set is downloaded to the computer prior to

initializing SCT software.
− ITS Software must register processes with Subsystem Integrity as they are initiated and

terminated.
− Each system process must generate a heartbeat
− Each user application process must generate either an heartbeat, or an Application Health

Counter FD.

• External Interfaces:
− Gateways will supply FDs as required by System Integrity.
− Redundancy Management will generate the following System Status FDs:

• SCCnnHC CCPnn Health Counter
• SCCnnPRmmR CCPnn, Process MM is Running
• SCCnnPRmmF CCPnn, Process MM failed
• SCCssSTAT CCP Subsystem ss is Communicating
• SDDnnHC DDPnn Health Counter
• SDDnnPRmmR DDPnn, Process MM is Running
• SDDnnPRmmF DDPnn, Process MM failed
• SDDssSTAT DDP Subsystem ss is Communicating
• SWnnnHC CCWSnnn Health Counter

System Management CSCI 4 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

• SWnnnPRmmR CCWSnnn Process mm is Running
• SWnnnPRmmF CCWSnnn Process mm failed
• SWSnnnSTAT CCWSnnn is Communicating

− System Messages
• Missed Heartbeat
• Computer State Change
• Subsystem State Change

• Thor will be delivered in two parts, an informal drop with group 2 (scheduled for 1/20), with a full
drop in Group 8 (4/20).
− Group 2 Content:

• Stub APIs for SSI Registration, Heartbeat and Error Reporting
• The intent is to provide APIs that allow the uses to correctly code their software.

These APIs return no data, so stub implementations do not need any functionality
underneath.

• Locally operating APIs for the System Configuration Table.
• The interfaces will execute and return data from the local copy of the SCT. The

local copy will be static unless updated on the local machine through APIs. Any
changes made to the local copy through the API will affect the SCT on that
processor only.

• An offline tool to generate the System Configuration Table
• This will be a Microsoft Access Database. Table editors will be available as will an

export routine to make the information available to the processors.
− Group 8 Content (Full Thor Content):

• The SCT is maintained across the system.
• SSI Interfaces function, with data relayed to SI
• SI reports failures, but takes no action in response to failures
• Improved Access interface

1.2.2 Redundancy Management CSC Functional Requirements
The functional requirements for System Integrity are arranged in the following major functions:

1 Set Integrity
2 System Integrity
3 Subsystem Integrity
4 Computer Integrity
5 System Configuration Table

1 Set Integrity

 Set Integrity provides the equivalent of System Integrity, but for all Test Sets in the system and
any computers not currently assigned to a Test Set

2 System Integrity

 System Integrity evaluates the operations on computers and subsystems. It provides data for
display at the System Status Display, and reports any errors or failures as System Messages.
When automatic recovery such as switchover is possible, it determines when to recover and
directs the recovery.
2.1 System Integrity will be a Redundant Subsystem
2.2 There will be one System Integrity Redundant Pair in each Test Set.
2.3 System Integrity will execute in the Test Set Master CCP.

System Management CSCI 5 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

2.4 If the received Subsystem Health Counter contains the next expected value and current
State of the Computer is Go, no change will be made to the SCT. Note that the next
expected value will typically be 1 greater than the current value, but it may be a rollover.

2.5 If the received Subsystem Health Counter contains a value other than the next expected
value, a Missed Health Counter System Message will be generated.

2.6 If the received Subsystem Health Counter contains a value other than the next expected
value, the Computer on which the subsystem executes will be placed in a No Go state.

2.7 If an expected Health Counter is not received, the Computer on which the Subsystem
executes will be placed in a No Go State. Note that the missing Health Counters must
be detected without receiving a packet from the computer.

2.8 If a Computer is placed in a No Go State, all Subsystems on the Computer will be placed
in a No Go State.

2.9 If a Computer is placed in a No Go State, a Computer State Change System Message
will be generated.

2.10 Upon receipt of a Subsystem Health Message, System Integrity will update the SCT to
reflect any changes in the state of the subsystem.

2.11 If a Subsystem is placed in a No Go State, a Subsystem State Change System Message
will be generated.

2.12 System Integrity will use data other than the Subsystem Health Message and Subsystem
Health Counter to determine the Subsystem Health.

2.13 If an Active Redundant Subsystem is placed in a No Go State, System Integrity will
trigger the Standby Subsystem to transit to the Active Role.

2.14 If a subsystem is put in No Go state, the subsystem will be commanded to terminate.

3 Subsystem Integrity

 Subsystem Integrity monitors the health and status of the hardware and software that
composes a subsystem. As processes come up, they register with Subsystem Integrity
and begin supplying a periodic heartbeat. Subsystem Integrity monitors the heartbeat to
ensure that each registered application is still cycling. Subsystem Integrity also provides
a mechanism for processes to report errors. Based on the status processes as determined
by the heartbeat and any error reports, Subsystem Integrity makes a determination on
the health of the subsystem. The primary health indicator used to report the subsystem
health is the Subsystem Health Counter. As long as the subsystem is healthy, the
counter is periodically incremented and published as an FD. If the subsystem is
determined to be unhealthy, the Health Counter is published, but not incremented.

3.1 Subsystem Integrity will provide an API to allow processes to register the process and

specify its minimum rate.
3.2 Subsystem Integrity will automatically register processes that issue an Application

Health Counter FD.
3.3 When a process registers, Subsystem Integrity will assign the process a CLCS Process

Number and generate a “Process is Running” FD containing the mapping between the
Process name and the CLCS Process number.

3.4 Subsystem Integrity will provide a Heartbeat API to allow the those processes that
registered through the API to check in periodically.

3.5 If a registered Process fails to check in at its specified minimum rate, System Integrity
will generate a Process Failed FD. This check in can be either through the API or
through continued Application Health Counter FDs.

3.6 A subsystem is considered healthy under the following conditions:
3.6.1 Each registered process is generating a heartbeat, and
3.6.2 All critical processes have registered, and

System Management CSCI 6 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

3.6.3 No Fatal Errors have been reported by the processes in the subsystem, and
3.6.4 TBD

3.7 Subsystem Integrity will periodically issue a Health Counter FD.
3.8 The first Health Counter FD will be issued when Subsystem Integrity has finished its

own initialization.
3.9 If the Subsystem is healthy, Subsystem Integrity will increment the Health Counter FD

prior to issuing it. Note that this increment may result in a rollover.
3.10 If the Subsystem is not healthy, Subsystem Integrity will not increment the Health

Counter FD prior to issuing it.
3.11 Multiple Subsystems on a single computer will be supported. The intent of this

requirement is to allow for a combined CCP/DDP in an IDE.
3.12 Subsystem Integrity will provide an API that allows a process to record errors detected

by the process.
3.13 All errors reported will be forwarded as Process Error System Messages
3.14 If a Process designated by the SCT as Critical Fails, Subsystem Integrity will publish a

Go System Event Code set to 0.
3.15 All changes to the SCT will be recorded in the SDC.

4 Computer Integrity

 Computer Integrity monitors each computer and relays the health of the computer to System
Integrity.

4.1 Only one copy of Computer Integrity will execute on a computer regardless of the
number of subsystems executing on that computer.

4.2 Computer Integrity will provide the following performance data periodically.
4.2.1 Average percent CPU Utilized over the period
4.2.2 Average percent memory available over the period
4.2.3 Network throughput during the period per unit time for each network to which

the Computer is attached.
4.2.4 Network interrupts received during the period per unit time for each network to

which the computer is attached.
4.2.5 Number of Network Errors since Go for each network to which the computer is

attached.
4.2.6 Average disk utilization during the period.
4.2.7 Number of disk accesses
4.2.8 Number of Disk Errors

5 System Configuration Table

 The System Configuration Table provides a logical and physical map of the Set. Within a Test set,
the data is constrained to the computers and subsystems in the Test Set. A system-wide SCT is
maintained for Set Master operations. Figure 3 provides an illustration of SCT data and relationships
within and external to the SCT.

System Management CSCI 7 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

#Name: String

Test Set

TCID

Executes

{0-1}

#Name: Subsystem_Name_Type
#Role: Role_Type
#State: Subsystem_State_Type
#Switchover Enabled: Boolean
-Recovery Code: Integer

Subsystem

#Name: String
#Critical: Boolean
#State: Process State

Process

#Host Name: Host Name Type
#Reference Designator: String

Resource

#Serial Number: Serial_Number_Type

Computer

#Name: String
#Connects to: Device List

External Interface

#Name: String

Group

corresponds to

Is Allocated

Is Using

Constrains

Specifies

Executes on

Is attached to
{0-3}

#Name

Activity

Executes

Requires

Requires

C&C
Workstation

Requires
Set

 Figure 3 - SCT Class Structure

 Bold items are defined in a different 5.x requirement
5.1 The file-based initialization data for the System Configuration Table will be

independent of a particular TCID and/or SCID except in the case where the SCT file
format varies across the set of SCIDs to be loaded.

5.2 The Redundancy Management CSC will provide an API to allow other applications to
retrieve SCT data

5.3 The System Configuration Table will make the following data available for each Set:
5.3.1 The Name of the Set
5.3.2 The Test Sets that make up the Set
5.3.3 The logical Resources that make up the Set.

5.4 The SCT will make the following data available for each logical Resource:
5.4.1 Host Name/Alias (i.e., lcc_gw_gse1)
5.4.2 Reference Designator (i.e., 130A1)
5.4.3 Attached External Interfaces
5.4.4 Physical Computer

5.5 The SCT will make the following data available for each Test Set
5.5.1 Name
5.5.2 Groups allocated to the Test Set
5.5.3 Groups in use by the Test Set
5.5.4 The Hostname of all Resources in the Test Set.
5.5.5 CCWS Resources allocated to the test set
5.5.6 CCWS Resources in use by the Test Set
5.5.7 The Subsystems in the Test Set
5.5.8 Gateway Subsystems defined for the Test Set.

System Management CSCI 8 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

5.6 The SCT will make the following data available for each External Interface
5.6.1 Name (i.e., GSE, LDB)

5.7 The SCT will make the following data available for each physical Computer
5.7.1 Serial Number

5.8 The SCT will make the following data available for each Group:
5.8.1 Name
5.8.2 Type (e.g., Control Group, Front End Zone)
5.8.3 The Resources assigned to the Group

5.9 The SCT will make the following data available for each Subsystem:
5.9.1 Name (i.e., GS1A, GS1S)
5.9.2 Role (i.e., Active, Standby, Hot Spare)
5.9.3 State (e.g., In Configuration, Platform Initialized, SCID Initialized, Loaded,

Communicating, Go, In ORT)
5.9.4 Resource on which the Subsystem is executing

5.10 The SCT will provide an API to allow the a modification to the Resource on which a
Subsystem executes.

5.11 SCT changes will be recorded in the SDC.

1.2.3 Redundancy Management CSC Performance Requirements

1 Set Integrity

− None

2 System Integrity

2.1 System Integrity will detect a missing Computer Heartbeat message within 1 cycle of the
expected arrival time.

 This means that if the HB is scheduled for frequency of 10ms, that SI will detect the
missing packet within 10ms of its expected arrival time. With a failure declared at two
missed cycles, this allows for a maximum 30ms detected failure time: If the failure
occurs immediately following a heartbeat, 10ms elapses before the first HB is not
generated, 10 more before the second is not generated, 10 more before SI realizes that
two have been missed. In order to not declare false alerts, and allow for network delays,
SI will probably be scheduled to look for the HB somewhere late in the cycle.

3 Subsystem Integrity

3.1 On Active CCPs and DDPs, the Health Counter FD shall be issued at the SSR.
3.2 On Standby CCPs and DDPs, the Health Counter FD shall be issued at 1 Hz.
3.3 On CCWSs, the Health Counter FD shall be issued at the DSR.
3.4 On CCPs, DDPs, and CCWSs, Status FDs shall be issued at 1 Hz.

4 Computer Integrity
4.1 All performance data shall be produced at 1 second intervals.

5 System Configuration Table

5.1 Correct System Configuration data will be provided to an API user within TBD ms of the API
invocation. The intent of this requirement is to allow distributed maintenance of the SCT if
performance constraints permit.

5.2 A change in the SCT will be visible on all processors within 10 ms of the change.

1.2.4 Redundancy Management CSC Interfaces Data Flow Diagrams
This section describes the interfaces to the RM CSC.

System Management CSCI 9 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

• Subsystem CSCIs provide application health data and can read the SCT as required. The provided
health data is used in subsequent SCT updates.

• Ideally, RM will use both Data Fusion and Constraint Management to detect failures in the system.
Exact use of these capabilities will be examined in the design phase.

• System Integrity uses System Services to deliver system messages that notify operators of subsystem
failures.

• Status is visible to operators through System Viewers that can extract data from the SCT.

• The initial values for the SCT are provided through file(s) exported from Microsoft Access.

Set Integrity

System Integrity

Subsystem
Integrity

API

Computer
Integrity

System
Configuration

Table

System
Viewers

API

Subsystem
CSCIs

External Interfaces

COTS
Office Tool

System Services
-System Message
Services

Figure 4 - RM CSC Data Flow

1.3 Redundancy Management CSC Design Specification
As discussed above, the Redundancy Management CSC consists of 5 major parts. Each of these parts are
discussed separately below.

1.3.1 Set Integrity
Set Integrity is not provided in Thor.

1.3.2 System Integrity
System Integrity design will be specified in part 2 of the Thor DP3.

1.3.3 Subsystem Integrity
Release Notes: For the first drop of Thor, the APIs are available for use, but are stubbed out.

System Management CSCI 10 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Subsystem Integrity monitors a single computer. Subsystem Integrity uses both application and hardware
level information to produce a summary status for the computer. This summary status is provided to
System Integrity as the Health Counter FD. Other Subsystem health data is also provided as FDs.
Information used to generate the FDs comes from a number of sources, including system services, system
processes, and FDs generated by applications.

1.3.3.1 Subsystem Integrity Detailed Data Flow

1.3.3.2 Subsystem Integrity External Interfaces

1.3.3.2.1 CSC Name Message Formats
TBD

1.3.3.3 Subsytem Integrity Display Formats

This CSC produces no displays

1.3.3.4 Subsystem Integrity Input Formats

All inputs are provided through the API.

1.3.3.5 Subsystem Integrity Recorded Data

1.3.3.6 Subsystem Integrity Printer Formats

This CSC does not print anything.

1.3.3.7 Subsystem Integrity Interprocess Communications

TBD

1.3.3.8 Subsystem Integrity External Interface Calls

Subsystem Integrity provides the following Application Programming Interfaces:

1.3.3.8.1 Class SSIProcess
The SSIProcess Class provides a service to allow Initialization and Termination Services the capability to
register a process that they are to create. It also allows deregistration of processes that are to be
terminated normally.

1.3.3.8.1.1 Specification
class SSIProcess
{

SSIProcess (string Name, int PID);
virtual void Complete ();
~SSIProcess ();

};

1.3.3.8.1.2 Process
The constructor for the Process class accepts the name of the processing being initiated and the OS
Process ID. This information is used to match the initiated process with the process providing a heartbeat.

System Management CSCI 11 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.3.8.1.2.1 Definition
SSIProcess (string Name, int PID)

Arguments:
• Name is a user supplied string. It should match the name supplied by Process when it creates a Heart

Class, or name that will be available through the application health counter.
• PID is the UNIX Process ID for the process being registered.
Return Value: N/A

1.3.3.8.1.3 Complete
The Complete method notifies Subsystem Integrity that the process created by the constructor should no
longer be monitored. This interface should only be invoked if there is normal termination of the process.
ITS must invoke this method prior to terminating the process so that no race condition is generated for a
missed heartbeat.

1.3.3.8.1.3.1 Definition
void Complete();

Arguments: N/A
Return Value: N/A

1.3.3.8.1.4 ~SSIProcess
The destructor cleans up the memory allocated in Subsystem Integrity as well as that in the application
program space.

1.3.3.8.1.4.1 Definition
~SSIProcess();

Arguments: N/A
Return Value: N/A

1.3.3.8.1.5 Example
SSIProcess *App1Process; // declare a pointer to a process

// fork process - returns PID
ApplProcess = new SSIProcess(ApplName, PID); // register the process

// later, determine that the process should end.
ApplProcess.Complete(); // Tell SSI not to worry about it
kill Process; // get rid of it
delete ApplProcess; // destroy the object instance.

1.3.3.8.2 Class SSICounter

System Management CSCI 12 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

+SSIProcessHeart()
+Beat()
+~ SSIProcessHeart()

SSIProcessHeart

+SSICounter ()
+Increment(): void
+~ SSICounter ()

SSICounter

The Counter Class provides an interface for data collection. Instances of the counter, declared in
application programs, can be monitored by Subsystem Integrity. As specific metrics are identified, it is
expected that this class will be further subclassed.

1.3.3.8.2.1 Specification

class SSICounter
{
SSICounter (string Name);
virtual void Increment (int by =1);
~SSICounter();
};

1.3.3.8.2.2 SSICounter
The constructor creates an instance of the counter visible to both the user and to Subsystem Integrity.

1.3.3.8.2.2.1 Definition
SSICounter (string Name)

Arguments:
Name provides a unique descriptive title under which the statistics are recorded.
Return Value: N/A

1.3.3.8.2.3 Increment
The increment methods increments the counter by the amount specified in “by”. If no value is specified,
the count is incremented by 1.

1.3.3.8.2.3.1 Definition
void Increment (int by=1);

Arguments:
by specifies the amount by which the counter should be incremented. If no value is supplied, it will be
incremented by 1.
Return Value: N/A

1.3.3.8.2.4 ~SSICounter
This interface destroys the counter object and informs SSI that the data is no longer being supplied.

System Management CSCI 13 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.3.8.2.4.1 Definition
~SSICounter();

Arguments: N/A
Return Values: N/A

1.3.3.8.2.5 Example
SSICounter DiskAccessCounter(“DiskAccesses”);

// read from disk
DiskAccessCounter.Increment();
// or if you read and wrote…
DiskAccessCounter.Increment(2)

1.3.3.8.3 Class SSIProcessHeart
The SSIProcessHeart class provides a heartbeat for a process. Each process is expected to either invoke
this interface periodically, or to provide an application level Health Counter FD (not the Subsystem
Health Counter FD). For latency reasons, using the API is the preferred approach.

1.3.3.8.3.1 Specification:
class SSIProcessHeart :: private Counter
{
SSIProcessHeart (string Name, int Period, boolean Periodic);
virtual void Beat ();
~SSIProcessHeart ();
}

1.3.3.8.3.2 SSIProcessHeart
This constructor defines to Subsystem Integrity the process to monitor and its expected frequency. It also
creates the object in local memory.

1.3.3.8.3.2.1 Definition
SSIProcessHeart (string Name, int Period, boolean Periodic);

Arguments:
• The Name argument uniquely identifies the process to monitor. The name must be unique to the

Computer. If the process was registered using the SSIProcess Object, the name must match the name
provided at that interface.

• The Period specifies the period of the process in milliseconds. For acyclic processes, this is the
maximum amount of time the process will sleep between cycles. MAXINT is considered to be
infinite. Note that a process with a MAXINT period cannot be checked for failure directly by SI.

• The Periodic boolean is true if the process is cyclic and false if acyclic. Cyclic processes are
monitored for incrementing heartbeats. An incrementing heartbeat must increase by exactly 1 for
each period. More or less than 1 is considered a failure. Acyclic processes are monitored for
increasing heartbeats. The heartbeat must increase by at least one in the specified period. Increases
of more than one are not considered failures. No increase is considered a failure.

Return Value: N/A

1.3.3.8.3.3 Beat
This procedure increments the counter. It should be invoked on every cycle of the process. If not

invoked as frequently as specified in the constructor, the process will be considered failed.

System Management CSCI 14 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.3.8.3.3.1 Definiiton
void Beat()

Arguments: N/A
Return Value: N/A

1.3.3.8.3.4 ~SSIProcessHeart
The destructor destroys the object and notifies SSI that no further hearbeats will be supplied by the
process. Note that if the process has not been unregistered by through the SSIProcess.Complete interface,
this will result in nofication of a failed process.

1.3.3.8.3.4.1 Definition
~ProcessHeart()

Arguments: N/A
Return Value: N/A

1.3.3.8.3.5 Example
ProcessHeart ApplHeart(“ApplClient”, TRUE, 1000); //Cyclic 1Hz process
// or
ProcessHeart Appl2Heart(“ApplClient2”, FALSE, 30000); //Acyclic process, will wake up at least

//30 seconds

ApplHeart.Beat();

1.3.3.8.4 Class SSISoftwareError
The Software Error class provides a mechanism for an application to report an error to the local copy of
Subsystem Integrity. One instance of the class must be created in order to report errors. Subclasses can
be used as desired by the application to group error handling. All relevant application identification data
is available to SSI through the registration process, and does not need to be supplied through these
interfaces.

1.3.3.8.4.1 Specification:
enum ErrorType {DATA, EXECUTION, INTERFACE};
enum ErrorSeverity {INFORMATION, WARNING, ERROR, FATAL_ERROR};

class SSISoftwareError
{
SSISoftwareError();
virtual void Report (string ErrorName, ErrorType EType, ErrorSeverity Severity, string
ErrorData);
~SSISoftwareError();
}

1.3.3.8.4.2 SSISoftwareError
The constructor creates an instance of the Error object that can then be used to report errors. Multiple
instances of Software Error can be created. The constructor also retrieves from the SCT any necessary
Process Identification information that will be needed when errors are recorded.

1.3.3.8.4.2.1 Definition
SSISoftwareError()

System Management CSCI 15 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Arguments: N/A
Return Values: N/A

1.3.3.8.4.3 Report
The Report method is used to notify Subsystem Integrity that an error actually occurred.

1.3.3.8.4.3.1 Definition
void Report (string ErrorName, ErrorType EType, ErrorSeverity Severity, string ErrorData);

Arguments
• ErrorName: This specifies the name to be used to track the error.
• EType: Classifies the error
• Severity: Aids in System Integrity determination of the appropriate response. Specific reactions will

be defined on a case by case basis, but general use is that Information Errors are ignored by SI.
Warning Errors will be ignored unless some threshold is received, and then used only if it appears the
warnings are localized. Exceeding a defined Error rate will result in switchover if available. Fatal
Errors will trigger immediate switchover in critical processes.

• ErrorData: Any other data to be recorded that may aid in determining the cause of the error.
Return Value: N/A

1.3.3.8.4.4 ~SSISoftwareError
The destructor should only be invoked as part of process termination.

1.3.3.8.4.4.1 Definition
~SSISoftwareError()

Arguments: N/A
Return Value: N/A

1.3.3.8.4.5 Example

SSISoftwareError AllErrors; // created at program start
…
AllErrors.Report (“FileNotFound”, DATA, ERROR);
…
AllErrors.Report(“InvalidCommand”,INTERFACE,FATAL_ERROR):

1.3.3.9 Subsystem Integrity Table Formats

This CSC uses no tables produced by an external source.

1.3.4 Computer Integrity
Computer Integrity design will be specified in part 2 of the Thor DP3.

1.3.5 System Configuration Table
The master copy of the System Configuration Table resides on the Master CCP. Synchronized copies are
maintained on all other computers.

On each computer, the SCT is initially built from pre-stored files, then updated based on the changes that
have been recorded at the Master CCP. The SCT is maintained in shared memory, and an API is

System Management CSCI 16 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

provided to allow the SCT users to get access to the information. The system configuration can be viewed
as a tree – the Set contains Test Sets, each Test Set is a group of Subsystems, each Subsystem is a
collection of processes. The structure of the SCT, and the design of the API reflect this organization.
Iterators are provided to allow looping through the sets to extract information, shortcut “My” objects are
also defined at each level to allow quick access to local configuration data.

Initial creation of the SCT is through Microsoft Access tables. These tables allow much of the
configuration to be defined prior to the start of the test, then updates as the system is configured.

1.3.5.1 System Configuration Table Detailed Data Flow

SCT
(Master)

SCT
(Local)

SCT
Software

Subsystem
Integrity

SCT
Software

System Event Codes

System
I ntegrity

Subsystem
Integrity

System Event Codes

Health and Status FDs System Event Codes
 Health and Status FDs

SCT API

Applications

ReadWrite

Update SCT

Update SCT
Read

Master CCP
Other Computer

Figure 5 - System Configuration Table Data Flow

When an application at a computer requests a modification to the SCT through the provided API, the
update request is sent to the master copy of the SCT located on the Master CCP. There, the update is
made as appropriate, and the other SCTs are updated through System Event Codes. The updated data is
then available to the application through the Read APIs. Subystem Integrity updates are handled in much
the same way. Subsystem Integrity reports health and Status through both System Event Codes and
Health and Status FDs. Based on this input, System Integrity evaluates the health of the subsystem and
updates the master copy of the SCT. These updates are relayed to all copies of the SCT through System
Event Codes.

1.3.5.2 System Configuration Table External Interfaces

1.3.5.2.1 CSC Name Message Formats
TBD

1.3.5.3 System Configuration Table Display Formats

Microsoft Access Forms are used to generate the SCT data files. The generic Access Table views will be
available for the 1/20 drops. Formatted displays will be provided in part 2 of the DP3.

System Management CSCI 17 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.4 System Configuration Table Input Formats

Input formats for the Subsystem Integrity CSC are defined by the FD Formats and the API.

1.3.5.5 System Configuration Table Recorded Data

This information will be provided at drop 2.

1.3.5.6 System Configuration Table Printer Formats

This CSC does not print anything.

1.3.5.7 System Configuration Table Interprocess Communications

This information will be provided at drop 2.

1.3.5.8 System Configuration Table External Interface

This CSC provides an interface for reading data form the SCT as well as writing information into the
SCT. The interface is comprised of multiple objects. As shown in Figure 6, the SCT is a tree of
containers that reflects the logical configuration of the system. The Set is a collection of Test Sets, Each
Test Set contains a number of Subsystems, Resources, Gateways and Groups. Resources are attached to
external systems, and Subsystems are composed of Processes.

SCTRSet

SCTRContainerTestSet

SCTRTestSet

SCTRContainerSubsystem

SCTRContainerGatewayAllocated

SCTRContainerGroupAllocated

SCTRResourceSCTRSubsystem
SCTRGroup

SCTRGateway

SCTRContainerProcess

SCTRProcess

SCTRContainerAttachedTo

SCTRAttachedTo

SCTContainerResourceInUse

SCTRContainerGatewayInUse

SCTContainerResourceAllocated SCTRContainerGroupInUse

Figure 6 - SCT API Hierarchy

The collections are all derived from the RogueWave class of Ordered (Figure 7). While there is no
inherent ordering of the various items, the use of the Ordered class allows searching for objects and
stepping through each of the Objects. The SCT Ordered privately inherits the Ordered class methods.
Only those methods that manipulate the existing members of the set are exported through the SCT
Ordered class. This prohibits deletion of SCT elements through the API. No unique methods are
provided in the SCT Ordered subclasses, but the methods are redefined to allow only homogeneous sets.

System Management CSCI 18 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Figure 8 specifies the methods of each of the classes. In order to be collected, each is derived from the
RogueWave RWCollectable class. All values in the classes are available as methods that return the
values. The GetContainer methods in each class allow retrieval of the containers as shown in Figure 6.
The methods are further specified and explained in the subsections below.

+find()
+first()
+last()

RWOrdered

+first()
+last()
+find()

SCTOrdered

SCTRContainerResource SCTRContainerSubsystem SCTRContainerGateway SCTRContainerGateway

SCTRContainerTestSet SCTRContainerGroup SCTRContainerAttachedTo SCTContainerProcess

+GetContainer()
+MyTestSet()

SCTRSet

Figure 7 - SCT Container Structure

System Management CSCI 19 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

+MySubsystem()
+MyResource()
+MyGroup()
+Name()
+GetContainerAllocated()
+GetContainerInUse()
+GetContainer()

SCTRTestSet

+Name()
+Criticality()
+CurrentState()

SCTRProcess

+ResidingOn()
+RTCNPrimaryIPAddress()
+Executing()
+RTCNBackupIPAddress()
+DCNPrimaryIPAddress()
+DCNBackupIPAddress()
+ReferenceDesignator()
+GetContainer()
+PhysicalID()

SCTRResource

+Classification()
+CurrentState()
+ExecutingOn()
+Role()
+SwitchoverEnabled()
+GetContainer()
+Name()
+LogicalID()

SCTRSubsystem

+GetContainer()
+Name()

SCTRGroup

+SerialNumber()

SCTRComputer SCTRGateway

+ChangeClassification()
+ChangeCurrentState()
+ChangeName()
+ChangeRole()
+ChangeSwitchoverEnabled()
+ChangeExecutingOn()

SCTWSubsystem

SCTWGateway

SCTCollectable

RWCollectable

Figure 8 - SCT Object Inheritance

1.3.5.8.1 Class SCTRSet
The SCTRSet Class provides a read only interface for the retrieval of information visible to the Set. The
provided methods allow the user to access the Test Set object containing their personal Test Set
information as well as provides access to a container having iteration methods to cycle through all of the
test sets within the Set. A definition of the available methods as well as examples are shown in the
proceeding paragraphs.

1.3.5.8.1.1 Specification
class SCTRSet
{
 SCTRSet();
 virtual void GetContainer(SCTRContainerTestSet *pObject);
 virtual void GetContainer(SCTRContainerResource *pObject);
 virtual SCTRTestSet* MyTestSet();
 ~SCTRSet();
};

1.3.5.8.1.2 SCTRSet
The SCTRSet constructor will create a Set instance that can provide information in the entire local SCT.

1.3.5.8.1.2.1 Definition
SCTRSet()

Arguments: N/A
Return value: N/A

System Management CSCI 20 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.1.3 ~SCTRSet
The ~SCTRSet destructor will destroy a Set instance. This destroys only information created for the using
application. The SCT is not affected by this destructor.

1.3.5.8.1.3.1 Definition
~SCTRSet()

Arguments: N/A
Return value: N/A

1.3.5.8.1.4 GetContainer
The GetContainer API provides the Test Set Container or the Resource Container object within a Set.

1.3.5.8.1.4.1 Definition
void GetContainer(SCTRContainerTestSet *pObject)
void GetContainer(SCTRContainerResource *pObject);

Arguments: pObject is a pointer to the type of container object needed.
Return value: N/A

1.3.5.8.1.5 MyTestSet
The GetMy API provides the Test Set object within a Set where the requester resides.

1.3.5.8.1.5.1 Definition
VRTestSet * MyTestSet()

Arguments: N/A
Return value: A pointer to the requester’s Test Set object containing their Test Set information.

1.3.5.8.1.6 Examples
#include”SCTRAPI.h”
…

SCTRTestSet *pMyTestSet; // a Test Set object pointer.
SCTRContainerTestSet *pTestSetContainer; // a Test Set Container object pointer.

SCTRSet *SCT = new SCTRSet; // allocates a Set object called SCT.

pMyTestSet = SCT.MyTestSet(); // retrieve the requester’s Test Set.
SCT.GetContainer(pTestSetContainer); // retrieve a container with a collection of Test Sets.

delete SCT; // remove the allocated Set object.
…

1.3.5.8.2 Class SCTRTestSet
The SCTRTestSet provides a read only interface for the retrieval of information visible to the Test Set. Its
interface is much the same as the SCTRSet interface with a couple additions. Similar to the SCTRSet
interface, this interface provides methods that allow access to personal information such as its Subsystem,
its Resource, its Name, etc. Additionally, access to a container is provided having iteration methods
allowing the ability to visit all Subsystems, Resources, or Gateways within the Test Set. This interface
may be used through the SCTRSet class or if constructed, will provide the Test Set the requester is

System Management CSCI 21 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

currently residing in. A definition of the available methods as well as examples are shown in the
proceeding paragraphs.

1.3.5.8.2.1 Specification
class SCTRTestSet
{
 SCTRTestSet();
 virtual void GetContainerAllocated(SCTRContainerResource *pObject);
 virtual void GetContainerAllocated(SCTRContainerGateway *pObject);
 virtual void GetContainerAllocated(SCTRContainerGroup *pObject);
 virtual void GetContainerInUse(SCTRContainerResource *pObject);
 virtual void GetContainerInUse (SCTRContainerGateway *pObject);
 virtual void GetContainerInUse (SCTRContainerGroup *pObject);
 virtual void GetContainer(SCTRContainerSubsystem *pObject);
virtual SCTRSubsystem* MySubsystem();
 virtual SCTRResource* MyResource();
 virtual SCTRGateway* MyGateway();
 virtual SCTRGroup* MyGroup();
 virtual NAMETYPE Name();
 ~SCTRTestSet();
};

1.3.5.8.2.2 SCTRTestSet
The SCTRTestSet constructor will create a Test Set instance that only has information pertinent to the
requester, i.e., the Test Set they belong to.

1.3.5.8.2.2.1 Definition
SCTRTestSet()

Arguments: N/A
Return value: N/A

1.3.5.8.2.3 ~SCTRTestSet
The ~SCTRTestSet destructor will destroy a Test Set instance.

1.3.5.8.2.3.1 Definition
~SCTRTestSet()

Arguments: N/A
Return value: N/A

1.3.5.8.2.4 GetContainer
The GetContainer APIs provide the requested Container object within a Test Set.

1.3.5.8.2.4.1 Definition
 void GetContainerAllocated(SCTRContainerResource *pObject);
 void GetContainerAllocated(SCTRContainerGateway *pObject);
 void GetContainerAllocated(SCTRContainerGroup *pObject);
 void GetContainerInUse(SCTRContainerResource *pObject);
 void GetContainerInUse (SCTRContainerGateway *pObject);
 void GetContainerInUse (SCTRContainerGroup *pObject);

System Management CSCI 22 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

 void GetContainer(SCTRContainerSubsystem *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value: N/A

1.3.5.8.2.5 MySubsystem
The MySubsystem API provides a subsystem object containing local subsystem information.

1.3.5.8.2.5.1 Definition
SCTRSubsystem* MySubsystem()

Arguments: N/A
Return value: A pointer to the requester’s Subsystem object containing their Subsystem information.

1.3.5.8.2.6 MyResource
The MyResource API provides a resource object containing local resource information.

1.3.5.8.2.6.1 Definition
SCTRResource* MyResource()

Arguments: N/A
Return value: A pointer to the requester’s Resource object containing their Resource information.

1.3.5.8.2.7 MyGroup
The MyGroup API provides a group object containing local group information.

1.3.5.8.2.7.1 Definition
SCTRGroup* MyGroup()

Arguments: N/A
Return value: A pointer to the requester’s Group object containing their Group information.

1.3.5.8.2.8 Name
The Name API provides the Name of a Test Set object.

1.3.5.8.2.8.1 Definition
NAMETYPE Name()

Arguments: N/A
Return value: The name of this Test Set.

1.3.5.8.2.9 Example(s)
#include”SCTRAPI.h”
…

SCTRSubsystem *pMySubsystem; // a Subsystem object pointer.
SCTRResource *pMyResource; // a Resource object pointer.
SCTRGateway *pMyGateway; // a Gateway object pointer.
SCTRGroup *pMyGroup; // a Group object pointer.
SCTRContainerSubsystem *pSubsystemContainer; // a Subsystem Container object pointer.
SCTRContainerResource *pResourceContainer; // a Resource Container object pointer.

System Management CSCI 23 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

SCTRContainerGateway *pGatewayContainer; // a Gateway Container object pointer.
SCTRContainerGroup *pGrouptContainer; // a Group Container object pointer.
NAMETYPE TestSetName; // the name of this test set.

SCTRTestSet *MyTestSet = new SCTRTestSet; // allocates a Test Set object called SCT that contains
// the requester’s Test Set information..

TestSetName = MyTestSet.Name(); // retrieve the requester’s Test Set name.
PMySubsystem = MyTestSet.MySubsystem(); // retrieve the requester’s Subsystem.
pMyResource = MyTestSet.MyResource(); // retrieve the requester’s Resource.
pMyGateway = MyTestSet.MyGateway(); // retrieve the requester’s Gateway.
pMyGroup = MyTestSet.MyGroup(); // retrieve the requester’s Group.

MyTestSet.GetContainer(pSubsystemContainer); // retrieve a container with a collection of
Subsystems

// known by the requester’s Test Set.
MyTestSet.GetContainerInUse(pResourceContainer); // retrieve a container with the collection of

// Resources currently in use by the Test Set.
MyTestSet.GetContainerInUse(pGatewayContainer); // retrieve a container with a collection of

// Gateways in use by the requester’s Test
// Set.

MyTestSet.GetContainerAllocated(pGroupContainer); // retrieve a container with a collection of
// Groups allocated to the requester's Test
// Set.

delete MyTestSet; // remove the allocated Test Set object.
…

1.3.5.8.3 SCTRGroup
The SCTRGroup provides a read only interface for the retrieval of information visible to the Group. Note
that constructor(s) and a destructor are not provided as an interface to this class. It is designed to be
utilized through the other classes. A definition of the available methods as well as examples are shown in
the proceeding paragraphs.

1.3.5.8.3.1 Specification
class SCTGroup
{
 virtual void GetContainer(SCTRContainerResource *pObject);
 virtual NAMETYPE Name();
};

1.3.5.8.3.2 GetContainer
The GetContainer API provides the Resource Container object within a Group. The items in the
container are only those items which belong to the group requesting the container.

1.3.5.8.3.2.1 Definition
void GetContainer(SCTRContainerResource *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value: N/A

1.3.5.8.3.3 Name

System Management CSCI 24 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

The Name API provides the Name of a Group object.

1.3.5.8.3.3.1 Definition
NAMETYPE Name()

Arguments: N/A
Return value: The name of this Subsystem.

1.3.5.8.3.4 Example(s)
#include”SCTRAPI.h”
…

SCTRContainerResource *pResourceContainer; // a Process Container object pointer.
NAMETYPE GroupName; // the name of this test set.

SCTRTestSet *SCT = new SCTRTestSet; // allocates a Test Set object called SCT that
// contains the requester’s Test Set
// information..

pMyGroup = SCT.MyGroup(); // retrieve the requester’s Group.

(SCT.MyGroup())->GetContainer(pResourceContainer); // retrieve a container with a collection of
processes

// known by the requester’s Subsystem.
GroupName = (SCT.MyGroup())->Name(); // retrieve the requester’s subsystem name.

delete MyTestSet; // remove the allocated Test Set object.
…

1.3.5.8.4 Class SCTRComputer
The SCTRComputer provides an interface to a computer’s physical attributes. Note that constructor(s)
and a destructor are not provided as an interface to this class. It is designed to be utilized through the
other classes. A definition of the available methods as well as examples are shown in the proceeding
paragraphs.

1.3.5.8.4.1 Specification
class SCTRComputer
{
 virtual SERIALNUMTYPE SerialNumber();
};

1.3.5.8.4.2 SerialNumber
The SerialNumber API provides the serial number of the physical computer which a resource is residing
on.

1.3.5.8.4.2.1 Definition
SERIALNUMTYPE SerialNumber()

Arguments: N/A
Return value: A value of SERIALNUMTYPE will be returned containing the serial number of this
computer object.

System Management CSCI 25 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.4.3 Example(s)
The following example assumes that a Test Set object has been created (see the SCRTestSet class
examples) and is called SCT.

#include”SCTRAPI.h”
…

SERIALNUMTYPE serialNum;

serialNum = ((SCT.MyResource())->ResidingOn())->SerialNumber(); // retrieve the requestor’s computer
// serial number.

…

1.3.5.8.5 SCTRResource
The SCTRResource provides a read only interface for the retrieval of information visible to a Resource
within a Test Set. Note that constructor(s) and a destructor are not provided as an interface to this class.
It is designed to be utilized through the other classes. A definition of the available methods as well as
examples are shown in the proceeding paragraphs.

1.3.5.8.5.1 Specification
class SCTResource
{
 virtual void GetContainer(SCTRContainerAttachedTo *pObject);
 SCTRSubsystem* Executing();
 HOSTNAMETYPE HostName();
 IPTYPE RTCNPrimaryIPAddress();
 IPTYPE RTCNBackupIPAddress();
 IPTYPE DCNPrimaryIPAddress();
 IPTYPE DCNBackupIPAddress();
 REFDESTYPE ReferenceDesignator();
 SCTRComputer* ResidingOn();
 IDTYPE PhysicalID();
};

1.3.5.8.5.2 GetContainer
The GetContainer API provides the AttachedTo Container object within a Subsystem providing the
ability to access the various connections a resource may have (LDB, GSE, etc).

1.3.5.8.5.2.1 Definition
void GetContainer(SCTRContainerAttachedTo *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value: N/A

1.3.5.8.5.3 Executing
The Executing API provides the Subsystem executing on this particular Resource.

1.3.5.8.5.3.1 Definition
SCTRSubsystem* Executing()

System Management CSCI 26 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Arguments: N/A
Return value: Returns a pointer to the Subsystem that this Resource is currently executing.

1.3.5.8.5.4 HostName
The HostName API provides the Host Name of a Resource object.

1.3.5.8.5.4.1 Definition
HOSTNAMETYPE HostName()

Arguments: N/A
Return value: Returns the name of the host where this Resource resides.

1.3.5.8.5.5 RTCNPrimaryIPAddress
The RTCNPrimaryIPAddress API provides the IP Address on the Primary RTCN of a Resource object.

1.3.5.8.5.5.1 Definition
IPTYPE RTCNPrimaryIPAddress()

Arguments: N/A
Return value: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.6 RTCNBackupIPAddress
The RTCNBackupIPAddress API provides the IP Address on the Backup RTCN of a Resource object.

1.3.5.8.5.6.1 Definition
IPTYPE RTCNBackupIPAddress()

Arguments: N/A
Return value: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.7 DCNPrimaryIPAddress
The DCNPrimaryIPAddress API provides the IP Address on the Primary DCN of a Resource object.

1.3.5.8.5.7.1 Definition
IPTYPE DCNPrimaryIPAddress()

Arguments: N/A
Return value: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.8 DCNBackupIPAddress
The DCNBackupIPAddress API provides the IP Address on the Backup DCN of a Resource object.

1.3.5.8.5.8.1 Definition
IPTYPE DCNBackupIPAddress()

Arguments: N/A
Return value: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.9 ReferenceDesignator
The ReferenceDesignator API provides the Reference Designator of a Resource object.

System Management CSCI 27 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.5.9.1 Definition
REFDESTYPE ReferenceDesignator()

Arguments: N/A
Return value: The reference designator for this Resource is returned.

1.3.5.8.5.10 ResidingOn
The ResidingOn API provides a Computer object on which a Resource object resides.

1.3.5.8.5.10.1 Definition
SCTRComputer* ResidingOn()

Arguments: N/A
Return value: A Computer object pointer where this Resource resides is returned.

1.3.5.8.5.11 Physical ID
The ID API provides the Physical ID of a Resource object.

1.3.5.8.5.11.1 Definition
IDTYPE PhysicalID()

Arguments: N/A
Return value: The ID of this Resource.

1.3.5.8.5.12 Example(s)
#include”SCTRAPI.h”
…

SCTRComputer *pMyComputer; // my computer object pointer.
SCTRContainerAttachedTo *pConnections; // an AttachedTo Container object pointer
for my

// resource.
HOSTNAMETYPE HostName; // the host name of my resource.
IPTYPE PrimaryRTCN; // my resources ip for the primary rtcn.
IPTYPE BackupRTCN; // my resources ip for the backup rtcn.
IPTYPE PrimaryDCN; // my resources ip for the primary dcn.
IPTYPE BackupDCN; // my resources ip for the backup dcn.
REFDESTYPE MyRefDes; // my resources reference designator.
IDTYPE ResourceId; // my resources id.

SCTRTestSet *SCT = new SCTRTestSet; // allocates a Test Set object called SCT that
// contains the requester’s Test Set
// information..

pMyComputer = (SCT.MyResource())->ResidingOn(); // retrieve the requester’s computer.

(SCT.MyResource())->GetContainer(pConnections); // retrieve a container with a collection of
processes

// known by the requester’s Subsystem.
MyRefDes = (SCT.MySubsystem())->ReferenceDesignator(); // retrieve the requester’s ref des.
HostName = (SCT.MyResource())->HostName(); // retrieve the requester’s host name.
ResourceId = (SCT.MyResource())->PhyscialID(); // retrieve the requester’s subsystem ID.

System Management CSCI 28 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

// retrieves the various network ip address.
PrimaryRTCN = (SCT.MyResource())->RTCNPrimaryIPAddress();
BackupRTCN = (SCT.MyResource())->RTCNBackupIPAddress();
PrimaryDCN = (SCT.MyResource())->DCNPrimaryIPAddress();
BackupDCN = (SCT.MyResource())->DCNBackupIPAddress();

delete MyTestSet; // remove the allocated Test Set object.
…

1.3.5.8.6 Class SCTRSubsystem
The SCTRSubsystem provides a read only interface for the retrieval of information visible to a Subsystem
within a Test Set. Note that constructor(s) and a destructor are not provided as an interface to this class.
It is designed to be utilized through the other classes. A definition of the available methods as well as
examples are shown in the proceeding paragraphs.

1.3.5.8.6.1 Specification
class SCTRSubsystem
 {
 virtual void GetContainer(SCTRContainerProcess *pObject);
 virtual CLASSIFICATIONTYPPE Classification();
 virtual CURRENTSTATETYPE CurrentState();
 virtual SCTRResource* ExecutingOn();
 virtual SCTRGroup* MyGroup();
 virtual NAMETYPE Name();
 virtual ROLETYPE Role();
 virtual boolean SwitchoverEnabled();
 virtual IDTYPE LogicalID();
};

1.3.5.8.6.2 Classification
The Classification API provides the type of a Subsystem object, i.e., CCP, DDP, CCWS, GATEWAY, etc.

1.3.5.8.6.2.1 Definition
CLASSIFICATIONTYPE Clasification()

Arguments: N/A
Return value: The classification of this Subsystem (CCP, DDP, CCWS, GATEWAY, etc.)

1.3.5.8.6.3 CurrentState
The CurrentState API provides the state of a Subsystem object, i.e., COMMUNICATING, GO, etc.

1.3.5.8.6.3.1 Definition
CURRENTSTATETYPE CurrentState()

Arguments: N/A
Return value: The current Subsystem’s current state (COMMUNICATING, GO, etc.)

1.3.5.8.6.4 ExecutingOn
The ExecutingOn API provides the Resource object of where this Subsystem is executing.

System Management CSCI 29 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.6.4.1 Definition
SCTRResource* ExecutingOn()

Arguments: N/A
Return value: A pointer to the requester’s Resource object containing its Resource information.

1.3.5.8.6.5 GetContainer
The GetContainer API provides the Process Container object within a Subsystem.

1.3.5.8.6.5.1 Definition
void GetContainer(SCTRContainerProcess *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value: N/A

1.3.5.8.6.6 Name
The Name API provides the Name of a Subsystem object.

1.3.5.8.6.6.1 Definition
NAMETYPE Name()

Arguments: N/A
Return value: The name of this Subsystem.

1.3.5.8.6.7 Role
The Role API provides the role of a Subsystem object, i.e., ACTIVE, STANDBY, HOTSPARE

1.3.5.8.6.7.1 Definition
ROLETYPE Role()

Arguments: N/A
Return value: The roll of this Subsystem (ACTIVE, STANDBY, HOTSPARE)

1.3.5.8.6.8 SwitchoverEnabled
The SwitchoverEnabled API provides a mechanism to determine if the current Subsytem is in switchover.

1.3.5.8.6.8.1 Definition
boolean SwitchoverEnabled()

Arguments: N/A
Return value: boolean (TRUE, FALSE)

1.3.5.8.6.9 LogicalID
The ID API provides the logical ID of a Subsystem object.

1.3.5.8.6.9.1 Definition
IDTYPE LogicalID()

Arguments: N/A
Return value: The ID of this Subsystem.

System Management CSCI 30 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.6.10 Example(s)
#include”SCTRAPI.h”
…

SCTRResource *pMyResource; // a Resource object pointer.
SCTRContainerProcess *pProcessContainer; // a Process Container object pointer.
NAMETYPE SubsystemName; // the name of this test set.
CURRENTSTATETYPE SubsystemState; // the current state of this subsystem.
CLASSIFICATIONTYPE SubsystemType; // the classification of this subsystem.
IDTYPE SubsystemId; // the id of this subsystem.

SCTRTestSet *SCT = new SCTRTestSet; // allocates a Test Set object called SCT that
// contains the requester’s Test Set
// information..

pMyResource = (SCT.MySubsystem())->ExecutingOn(); // retrieve the requester’s Resource.

(SCT.MySubsystem())->GetContainer(pProcessContainer); // retrieve a container with a collection of
// processes known by the requester’s
// Subsystem.

SubsystemState = (SCT.MySubsystem())->CurrentState(); // retrieve the requester’s current state.
SubsystemName = (SCT.MySubsystem())->Name(); // retrieve the requester’s subsystem name.
SubsystemId = (SCT.MySubsystem())->LogicalID(); // retrieve the requester’s subsystem ID.

delete MyTestSet; // remove the allocated Test Set object.
…

1.3.5.8.7 SCTRProcess
The SCTRprocess provides a read only interface for the retrieval of information visible to a Process within
a Subsystem. Note that constructor(s) and a destructor are not provided as an interface to this class. It is
designed to be utilized through the other classes. A definition of the available methods as well as
examples are shown in the proceeding paragraphs.

1.3.5.8.7.1 Specification
class SCTRProcess
{
 virtual boolean Critical();
 virtual CURRENTSTATETYPE CurrentState();
 virtual NAMETYPE Name();
};

1.3.5.8.7.2 Critical
The Critical API determines if the Process is critical.

1.3.5.8.7.2.1 Definition
boolean Critical()

Arguments: N/A
Return value: A boolean indicating the criticality of the process will be returned i.e., TRUE/Critical
FALSE/Not Critical

1.3.5.8.7.3 CurrentState

System Management CSCI 31 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

The CurrentState API provides the state of a Subsystem object, i.e., COMMUNICATING, GO, etc.

1.3.5.8.7.3.1 Definition
CURRENTSTATETYPE CurrentState()

Arguments: N/A
Return value: The current state of the process will be returned, i.e., COMMUNICATING, GO, etc.

1.3.5.8.7.4 Name
The Name API provides the Name of a Process object.

1.3.5.8.7.4.1 Definition
NAMETYPE Name()

Arguments: N/A
Return value: The name of the process will be returned of the specified type.

1.3.5.8.7.5 Example(s)
The following example assumes that the user of the process has already retrieved it from its container
owned by its subsystem and has called it pAprocess.

#include”SCTRAPI.h”
…

 NAMETYPE ProcessName;
 boolean IsCritical;
 CURRENTSTATETYPE ProcessState;

…

 ProcessName = pAprocess->Name();
 IsCritical = pAprocess->Critical();
 ProcessState = pAprocess->CurrentState();
… .

1.3.5.8.8 SCTWSubsystem
The SCTWSubsystem provides a read/write interface for the retrieval and update of information visible to
a Subsystem within a Test Set. Its read interface is derived from the SCTRSubsystem class therefore refer
to the SCTRSubsystem interface document regarding its use. Note that constructor(s) and a destructor are
not provided as an interface to this class. It is designed to be utilized through the other classes. A
definition of the available methods as well as examples are shown in the proceeding paragraphs.

1.3.5.8.8.1 Specification
class SCTWSubsystem : public SCTRSubsystem
{
 virtual void ChangeClassification(CLASSIFICATIONTYPE newClassification);
 virtual void ChangeCurrentState(CURRENTSTATETYPE newState);
 virtual void ChangeName(NAMETYPE newName);
 virtual void ChangeRole(ROLETYPE newRole);
 virtual void ChangeSwitchover(boolean value);
 virtual void ChangeID(IDTYPE newId);
 virtual RETURNTYPE Update();

System Management CSCI 32 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

};

1.3.5.8.8.2 ChangeClassification
The ChangeClassification API provides the ability to modify the classification of a Subsystem object, i.e.,
CCP, DDP, CCWS, GATEWAY, etc.

1.3.5.8.8.2.1 Definition
void ChangeClasification(CLASSIFICATIONTYPE newClassification)

Arguments: newClassification is an argument of type CLASSIFICATIONTYPE (CCP, DDP,
CCWS, GATEWAY, etc.) where its contents will update the local Subsystem1.
Return value: N/A

1.3.5.8.8.3 ChangeCurrentState
The ChangeCurrentState API provides the ability to modify the current state of a Subsystem object, i.e.,
COMMUNICATING, GO, etc.

1.3.5.8.8.3.1 Definition
void ChangeCurrentState(CURRENTSTATETYPE newState)

Arguments: newState is an argument of type CURRENTSTATETYPE (COMMUNICATING, GO,
etc.) where its contents will update the local Subsystem1.
Return value: N/A

1.3.5.8.8.4 ChangeName
The ChangeName API provides the ability to modify the current name of a Subsystem object.

1.3.5.8.8.4.1 Definition
void ChangeName(NAMETYPE newName)

Arguments: newName is an argument of type NAMETYPE where its contents will update the local
Subsystem1.
Return value: N/A

1.3.5.8.8.5 ChangeRole
The ChangeRole API provides the ability to modify the current role of a Subsystem object, i.e., ACTIVE,
STANDBY, HOTSPARE.

1.3.5.8.8.5.1 Definition
void ChangeRole(ROLETYPE newRole)

Arguments: newRole is an argument of type ROLETYPE (ACTIVE, STANDBY, HOTSPARE)
where its contents will update the local Subsystem1.
Return value: N/A

1.3.5.8.8.6 ChangeSwitchover
The ChangeSwtichover API provides the ability to change1 the current switchover state of a Subsystem
object.

1 A local update only modifies the writeable Subsystem object private members. It does not alter the
contents of the SCT. It is not until a Subsystem Update that the SCT is updated.

System Management CSCI 33 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.8.6.1 Definition
void ChangeSwitchover(boolean value)

Arguments: the new switchover state this subsystem is to change to.
Return value: N/A

1.3.5.8.8.7 ChangeID
The ChangeID API provides the ability to change1 the current Id of a Subsystem object.

1.3.5.8.8.7.1 Definition
void ChangeID(IDTYPE newId)

Arguments: the new Id this subsystem is to change assume.
Return value: N/A

1.3.5.8.8.8 Update
The Update API provides the ability to update the SCT to the changes made to a Subsystem object.

1.3.5.8.8.8.1 Definition
RETURNTYPE Update()

Arguments: N/A
Return value: A return code of type RETURNTYPE (type definition available through the API) which
identifies if the update was successful or not.

1.3.5.8.8.9 Example(s)
#include”SCTWAPI.h”
…

NAMETYPE newName; // the name of this test set.
CURRENTSTATETYPE newState; // the current state of this subsystem.
CLASSIFICATIONTYPE newClassification; // the classification of this subsystem.
IDTYPE newId;
ROLETYPE newRole;
RETURNTYPE updateResult;

… // appropriate information is stored in the change variables.

SCTRTestSet *SCT = new SCTRTestSet; // allocates a Test Set object called SCT that
// contains the requester’s Test Set
// information..

(SCT.MySubsystem())->ChangeName(newName); // change my subsystem name.
(SCT.MySubsystem())->ChangeState(newState); // change my subsystem state.
(SCT.MySubsystem())->ChangeClassification(newClassification); // change my subsystem

// classification.
(SCT.MySubsystem())->ChangeID(newId); // change my subsystem
id.
(SCT.MySubsystem())->ChangeRole(newRole); // change my subsystem role.
(SCT.MySubsystem())->ChangeSwitchover(TRUE); // change my subsystem
switchover

// state to in-switchover (TRUE).

System Management CSCI 34 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

UpateResult = (SCT.MySubsystem())->Update(); // change my subsystem role.

delete MyTestSet; // remove the allocated Test Set object.
…

1.3.5.8.9 SCTRGateway
The SCTRGateway provides a read only interface for the retrieval of information visible to the Gateway.
This object’s interface is derived from the SCTRSubsystem interface with no additions. Refer to the
SCTRSybsystem interface for definitions and examples on its use.

1.3.5.8.9.1 Specification
class SCTRGateway : public SCTRSubsystem
{
};

1.3.5.8.10 SCTWGateway
The SCTWGateway provides a read/write interface for the retrieval and update of information visible to
the Gateway. This object’s interface is derived from the SCTWSubsystem interface with no additions.
Refer to the SCTWSybsystem interface for definitions and examples on its use.

1.3.5.8.10.1 Specification
class SCTWGateway : public SCTWSubsystem
{
};

1.3.5.9 System Configuration Table File Formats

The SCT is built from 4 files. Each file is comma delimited and provides information that defines the part
of the system configuration. The format of each of these files is described below.

1.3.5.9.1 Test Set File
This file specifies the Test Sets that can exist in the systems and the Sets in which these Test Sets exist.
This is expected to be used primarily by Set Integrity.
Name: testsets.txt

Format: Comma delimited, all strings are enclosed in double quotes.
Field Type Contents
Test Set Name String A unique name for a test set. There are no constraints on the

contents of the string.

Example:
"OCR1 Set 1"
"OCR1 Set 2"

1.3.5.9.2 Group File
This file specifies the Groups of Resources that must be allocated to a single test set. This infomation is
used primarily by Set Integrity to ensure that no group is split across test sets.
Name: groups.txt

Format: Comma delimited, all strings are enclosed in double quotes.
Field Type Contents

System Management CSCI 35 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Group Name String The Name of the group. This name is unique
Test Set Name String A unique name for a test set. This name will exactly match a name

in the Test Set File.

Example:

"VAB Gateways","OCR1 Set 1"
"SME Gateways","OCR1 Set 2"
"HMF Gateways","IDE Set"

1.3.5.9.3 Resource File
This file specifies the parameters for the individual resources in the Set.
Name: resources.txt

Format: Comma delimited, all strings are enclosed in double quotes.
Field Type Contents
Host Name String The commonly used name for the Resource. This name is unique.
Reference
Designator

String This field specify the physical location of the resource

ID Int16 Number that uniquely identifies the resource within the set.
Primary RTCN
IP Address

String Defines the IP Address to be used by the Resource when
communicating on the Primary RTCN. This field may be null (for
gateways)

Backup RTCN
IP Address

String Defines the IP Address to be used by the Resource when
communicating on the Backup RTCN. This field may be null (for
gateways and all processors prior to installation of the backup
RTCN).

Primary DCN
IP Address

String Defines the IP Address to be used by the Resource when
communicating on the Primary DCN. This field may be null (for
CCWSs)

Backup DCN IP
Address

String Defines the IP Address to be used by the Resource when
communicating on the backup DCN. This field may be null (for
CCWSs and all processors prior to the installation of the backup
DCN)

Group String The Group to which this resource belongs

Example:
"IDE_CCP01","1","1A365","123.123.255.255","123.123.255.255","123.123.255.255","123.123.255.255"
,
"IDE_CCP02","2","1A366","233.233.233.233","233.233.233.233","233.233.233.233","233.223.223.223"
,
"IDE_DDP01","4","1A399","133.133.133.133","135.13.153.153","111.111.111.111","133.233.233.133",
"IDE_DDP02","3","1A400","233.233.233.233","111.11.111.111","222.222.222.222","133.133.133.133",
"IDE_GSE01","7","2A120","133.233.133.33","22.222.222.222",,,
"IDE_GSE02","6","2A250","144.244.144.44","33.33.33.33",,,"VAB Gateways"

1.3.5.9.4 Subsystem File
This file specifies the definition of the Subsystem, including test set membership and assignment of
resources.
Name: subsyst.txt

System Management CSCI 36 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Format: Comma delimited, all strings are enclosed in double quotes. Types other than strings are not
enclosed in quotes

Field Type Contents
ID Int16 Unique identifier for the subsystem. Used as the CPU ID in the

network message header.
Subsystem
Name

String The name of the subsystem being defined. Because this file is used
by Set Integrity, a given subsystem name may appear more than
once. The combination of Test Set/Subsystem Name is unique
within the file.

Role String This string will specify either “Primary” or “Secondary”
Switchover
Enabled

Integer When 0, Switchover is disabled. When 1 it is enabled. No other
value is valid.

Resource Host
Name

String The Host Name on which the Subsystem is to execute.

Test Set String Specifies the Test Set for which this mapping is valid. The Test
Set name will exactly match one of the names in the test set file.

Example:
1,"CCP1A","Primary",1,"IDE_CCP01","IDE Set"
2,"CCP1S","Standby",1,"IDE_CCP02","IDE Set"
3,"GSE1A","Primary",1,"IDE_GSE01","IDE Set"
4,"GSE1S","Standby",0,"IDE_GSE02","IDE Set"
5,"LDB1A","Primary",0,"IDE_GSE01","IDE Set"

System Management CSCI 37 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

This is the last page of the Document

